
CSC 486B Final Project Report – Team 9

Rylan Boothman, Avery Kushner, Oliver Tonnesen
University of Victoria

3800 Finnerty Rd, Victoria, BC V8P 5C2
{rylan, akushner, otonnesen}@uvic.ca

Abstract

We extend the Zero-shot face anti-spoofing model from
Liu et al. by applying their model to a zero-shot learning
problem using the CIFAR-100 data set, by allowing their
Deep Tree Network to have variable tree depth, and by re-
moving the need for pixel-wise supervision masks in train-
ing data [3, 1]. We define zero-shot learning as a ma-
chine learning task whose goal is to classify examples from
classes not seen during training. In testing, we found that
the model struggles to achieve results significantly better
than random guessing and never exhibits a loss curve that
decreases uniformly throughout training. We hypothesise
that the model’s issues are caused either by the removal of
pixel-wise supervision (meaning that the model can not gen-
eralize to data sets that do not contain maps for all training
samples) or there is a bug in our code. Despite this, a sig-
nificant drop off in accuracy between classes seen during
training and classes unseen during training did not occur.

1. Introduction
A face spoof attack is an attempt to deceive a facial

recognition system by using a fake face to impersonate a
genuine user or to hide an attacker’s identity. Common
spoof attacks include the use of makeup, masks, video re-
play, and printed photographs to fool recognition systems.
Face anti-spoofing is designed to detect such spoofs before
they’re sent to a facial recognition system.

While defenses do exist for a wide range of known spoof
attacks, they are usually trained only against one or two par-
ticular types of spoof attack, and are often ineffective when
employed to detect any unknown spoof attacks. It is thus
desirable to have as general a face anti-spoofing system as
possible.

Liu et al. [3] aim to detect unknown spoof attacks using a
Deep Tree Network (DTN) that partitions training samples
into semantically similar subgroups and learns to classify
each such subgroup individually.

This project aims to determine how general the proposed

DTN is when applied to different zero-shot learning prob-
lems. To do this, the model was modified to work with a
different set of data and for a different decision problem.
Additionally, this project extends the network in a number
of ways, including porting to a different machine learning
framework and adding additional hyperparameters.

2. Contributions of the original paper

Where previous works used either handcrafted or CNN-
based features to detect one or two types of face spoof at-
tack, [3] extends current methods by removing the need for
such supervised feature selection with their novel DTN, and
collect a much more comprehensive database, comprising
13 distinct types of face spoof attack.

2.1. Deep Tree Network

The DTN proposed in [3] avoids the need to learn hand-
crafted or CNN-based features by first partitioning train-
ing data into semantic subgroups without supervision and
based only on data variation. Once the partitions are made,
the network learns to make its binary decision indepen-
dently for each subgroup. Once a test sample is assigned
to its most similar partition, the network uses that parti-
tion’s learned binary classifier to determine whether or not
the sample is a spoof.

The DTN is a full binary tree with height 3. Its nodes
comprise three modules: the Convolution Residual Unit
(CRU), the Tree Routing Unit (TRU), and the Supervised
Feature Learning (SFL) module. Each non-terminal node
in the tree consists of one CRU and one TRU; it routes each
sample to either their left or right children based on data
variation. Each terminal node in the tree consists of one
CRU and one SFL module; it learns to predict whether or
not a sample is a spoof using both the binary classification
of spoof vs live, and also using a pixel-wise binary mask
indicating the position of the spoof in the sample to help the
network learn lower level features.

1



2.2. Zero Shot Face Anti-Spoofing with Multiple
Spoof Types

Zero Shot Face Anti-Spoofing (ZSFA) attempts prior to
[3] are trained using only 1 or 2 different types of spoof at-
tacks. [3] expand on this by training their model using thir-
teen spoof types: replay, print, half-mask, silicone, trans-
parent, paper craft, mannequin, obfuscation, impersonation,
cosmetic, funny eye, paper glasses, and partial paper. Liu
et al. hypothesis that the training with thirteen spoof attacks
allows their model to be more robust against unknown spoof
attacks.

2.3. Spoof in the Wild Database

Liu et al. also created the Spoof in the Wild database
which represents a large variation in spoof attack types and
provides a data set that future researchers my use as a bench
mark. The data is split into two main super classes: imper-
sonation attacks, whose goal is to have a sample be rec-
ognized as someone else, and obfuscation attacks, whose
goal is to remove the attacker’s identity from the sam-
ple. When collecting the samples for impersonation attacks,
720p video samples were taken from YouTube. The obfus-
cation attack samples are 1080p videos recorded directly by
the authors. In total, the database consists of 1 630 five to
seven second long videos.

3. Contributions of this project
This project extends the model detailed in [3] in a num-

ber of ways, including adding a hyperparameter to vary
the depth of the DTN, removing the pixel-wise supervision
in the SFL modules, and applying the model to a differ-
ent zero-shot learning problem. Additionally, we port the
model provided in [3] from TensorFlow2 to PyTorch [2] and
refactor the training and testing pipeline to mirror the struc-
ture used throughout the assignments in CSC 486B/586B.

3.1. Variable Tree Depth

The DTN proposed in [3] has a hard-coded tree depth
of 3, restricting the model to partition the training data into
only eight subgroups. however, the optimal number of clus-
ters may vary between data sets, so to allow users of the
model to tune the depth of the tree to the optimal value, we
made the tree depth configurable as a hyperparameter. To do
this, each of the CRU, TRU, and SFL modules are initial-
ized and accessed dynamically, and the amount of down-
sampling performed at each level of the tree is limited to
ensure lower levels of the tree still receive trainable input.

3.2. Removal of Pixel-wise Supervision

The model in [3] uses a binary mask for each training
sample that indicates where to look for the spoof. Exam-
ples of such masks can be seen in Figure 4 of [3]. The use

of pixel-wise supervision masks during training likely helps
the model to learn to identify spoofs, however it causes sig-
nificant overhead to applying the model to other data sets as
individual masks need to be created for every training sam-
ple. Additionally, the masks represent information that the
model will not have at test time, and the use of such masks
may not be possible when applied to certain data sets. For
these reasons we chose to remove the pixel-wise supervi-
sion from the model. Thus, instead of taking an image, la-
bel, and binary mask as input during training, the model
simply takes the image and corresponding label.

3.3. Application to Other Data

The original implementation of [3] on GitHub loads data
from .dat files that are not present in the Spoof in the Wild
Database. The Spoof in the Wild Database consists pri-
marily of 15 second long QuickTime videos and does not
have any .dat files in it, nor is the format of these .dat
files anywhere documented. Since the model is designed
for image classification and due of the time constraints of
this project, we decided to apply the model to a new data
set rather than convert the entire 200GB Spoof in the Wild
database to a format usable by the model. Testing the model
on a new data set has the added benefit of seeing if the
model is applicable to other zero-shot learning problems.

Instead of the Spoof in the Wild Database we used the
CIFAR-100 data set [1] that consists of 100 classes grouped
into 20 super-classes. To simulate zero-shot learning we
grouped the super-classes into two super-super-classes: nat-
ural and human-made objects and then dropped all train-
ing samples from 50% of the super-classes within each
of our super-super-classes. At test time no samples were
dropped. The natural super-classes are: aquatic mammals,
fish, flowers, fruit and vegetables, insects, large carnivores,
large natural outdoor scenes, large omnivores and herbi-
vores, medium-sized mammals, non-insect invertebrates,
people, reptiles, small mammals, and trees. The human-
made super-classes are: food containers, household electri-
cal devices, household furniture, large man-made outdoor
things, vehicles 1, and vehicles 2. The choice of super-
classes to drop during training is decided randomly when
training begins. Because fourteen of CIFAR-100’s super-
classes are natural and only six are human-made, we bal-
anced the training data by augmenting samples from the
human-made classes using simple transforms such as ver-
tical and horizontal flips.

4. Experimental Results
To tune the model we tested different numbers of filters,

learning rates, weight initializations, Adam optimizer pa-
rameters, and tree depths. The final set of parameters was
selected based on mean validation accuracy between the
human-made and natural classes. We used the mean vali-

2



dation accuracy between the two classes rather than overall
accuracy due to the severe class imbalance in the test data
set. Because the CIFAR-100 data set does not have a prede-
fined validation split, we used the first 1000 samples from
the training data as the validation data set.

4.1. Model Training

The best mean validation accuracy was achieved with a
learning rate of 10e-5, Kaiming normalization weight ini-
tialization, default Adam optimizer parameters, and a tree
depth of three. The training and validation results are shown
in Figures 1–4.

Figure 1. Human-made class training and validation accuracy

Figure 2. Natural class training and validation accuracy

Figure 3. Overall training and validation accuracy

4.2. Test Results

The test results can be seen in Figure 5.The x-axis of Fig-
ure 5 shows the accuracy for just the Human-made class,
just the natural class, and both classes together. The y-axis
of Figure 5 shows the accuracy for just the sub-classes seen
during training, just the sub-classes that were dropped dur-
ing training, and all of the sub-classes together.

We hypothesised before training the model that higher
accuracy would be achieved for the natural class than the

Figure 4. Overall training and validation loss

human-made class due to class imbalance in the training
data and attempted to avoid this by augmenting samples
from the human-made class. However, as seen in Figures
1, 2, and 5 this clearly did not work.

Despite this, the DTN achieves similar test accuracy be-
tween classes that were seen during training and classes
that were dropped during training. A possible conclusion
to draw from this is that the model succeeds at zero-shot
learning, however because the test accuracy is only slightly
better than what would be achieved by random guessing it
could also be that the model has not learned anything and is
just guessing randomly.

Figure 5. Test Accuracy

5. Future Directions
As can be seen in Figures 1 – 5 there are obvious issues

in the application of the DTN to the CIFAR-100 data set
and more work needs to be done to determine the source
of these issues. We hypothesise that the cause of the issues
is either the removal of the pixel-wise supervision masks,
which would mean that the DTN cannot be applied to a
data set that does not have these. To test this hypothesis
we would need to create the pixel maps for the CIFAR-100
data set and attempt to re-train the model using them. Due
to the time constraints of this project, this was not possi-

3



ble. Our other hypothesis to explain why the DTN is not
working is that we introduced a bug either while porting the
model PyTorch or while modifying the tree depth parameter
and allowing it to vary. However, we were not able to find
any obvious bugs in the time we had.

5.1. Zero-shot learning for Multi-class Classifica-
tion

Since the CIFAR-100 data set is already grouped into
classes and super-classes, zero-shot learning could be ap-
plied directly to it without our super-super-classes by drop-
ping all the samples from half of the classes within each
super-class at training time and then making a multi-class
classification of each sample among the twenty super-
classes. However, the deep tree network is inherently de-
signed for binary classification and the amount of modi-
fication required for the tree routing algorithm to handle
multiple-classes was beyond the scope of this project.

References
[1] A. Krizhevsky. Learning multiple layers of features from tiny

images. Technical report, 2009.
[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[3] A. J. X. L. Yaojie Liu, Joel Stehouwer. Deep tree learning
for zero-shot face anti-spoofing. In In Proceeding of IEEE
Computer Vision and Pattern Recognition (CVPR 2019), Long
Beach, CA, 2019.

4


